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On the validity of the elastic model for the nematic surface 
anchoring energyf- 

by S .  PONTI* and L. R. EVANGELISTAX 
Dipartimento di Fisica del Politecnico di Torino, Corso Duca degli Abruzzi 24, 

10129 Torino, Italy 

(Receiued 29 June 1995; accepted I0 July 1995) 

The intrinsic uniform and non-uniform contributions to the anisotropic part of the surface 
energy are considered. Our analysis shows that the uniform part can be separated into an 
intrinsic and an extrinsic term. The first one is due to the nematic-nematic interaction only, 
whereas the second one is due to the nematic-substrate interaction. They are found to be of 
the same order of magnitude (w 1 erg cm’). The non-uniform part takes its origin from the 
spatial variation of the elastic constants. By means of a semi-microscopic model it is shown 
that, in the framework of perfect nematic order, the extrapolation length of the elastic origin 
is microscopic. On the contrary, if the spatial variation of the scalar order parameter is taken 
into account, simple calculations indicate that the extrapolation length is of the order of the 
coherence length in the nematic phase. 

1. Introduction 
The bulk elastic theory of nematic liquid crystals 

(NLC) is well established [ 11. It was built up by analogy 
with the elastic theory for solid materials by substituting 
the usual deformation tensor [2] with the tensor ni,j = 

d n i / d x j .  n is the macroscopic vector field describing the 
average molecular orientation of the major axis. x j  are 
the Cartesian coordinates of a small volume dz con- 
taining a number of molecules so large that the statistical 
average, by means of which n is defined, is meaningful. 
According to the elastic theory, the elastic energy density, 
F, is a positive defined quadratic form in ni, j .  This means 
that 

= * B i j k l n i , j n k . l >  (1) 

where the elastic tensor B i j k l =  Bkl i j  is position independ- 
ent in the bulk. It can be decomposed, as is well known 
[3], in terms of the elements of symmetry of the NLC 
phase. This usual procedure leads to 

F = i[k,,(divn)2 + k,,(n x rot n)’ + k,,(n x rot n)’], 

which is the well-known Frank expression for the elastic 
energy density of a NLC [4]. 

(2) 
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Maringa Av. Colombo 3690, 87020-900 Maringa, (PR), Brazil. 

2. Model 
By means of semi-microscopic models, it is possible 

to  evaluate the elastic tensor pijkl  when the intermol- 
ecular interaction responsible for the nematic phase 
is known [5-81. This kind of calculation is relatively 
simple for the bulk, where the elements of symmetry of 
the NLC phase reduce to n. Near the surface, the 
situation is more complicated for two different reasons. 
First, the elements of symmetry of the NLC phase are n 
and the geometrical normal to the bounding surface, z. 
This implies that usually the number of surface elastic 
constants is larger than the one in the bulk [6-91. 
Second, the ‘elastic constants’ are expected to be position 
dependent. Consequently, in a surface layer whose thick- 
ness is of the order of the range of the intermolecular 
forces giving rise to the NLC phase, the elastic energy 
density is 

F = $ P i j k l ( Z ) n i , j n k , l  + 6 F ( n i , j ) ,  (3) 

where Bijkl(z) take into account the incomplete 
NLC-NLC interaction and 6F the new elements of 
symmetry of the phase. Recently, by means of a 
Maier-Saupe [lo] interaction law, we have analysed 
the elastic description of a NLC close to a substrate, by 
supposing an interaction volume of ellipsoidal shape 
[7]. In that context, the p i j k l ( z )  and 6F have been 
evaluated. Our analysis shows that /?ijk.(z) and 6F exist 
in a surface layer whose thickness is of the order of 
20-30 molecular dimensions. In the same framework, 
we have also shown that the uniform part [ 111 of the 
free energy density is intrinsically anisotropic with an 
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106 S. Ponti and L. R. Evangelista 

easy axis [ 121 parallel to the geometrical normal (home- 
otropic orientation). The associated anisotropic 
anchoring energy is found to be of the order of 
1 erg cm ~ ’, using reasonable values for the physical 
parameters characterizing a normal NLC [ 131. Since 
this anisotropic anchoring energy comes only from the 
NLC itself, from now on it will be called intrinsic 
uniform and denoted by Ku [ 11 1. The extrapolation 
length connected to this energy is defined as Li,= 
Ab/Kt,. with kb being the bulk value of the average 
t;rank elastic constant. 

3. Analysis 
In this paper we want to analyse all the possible 

contributions to the anisotropic part of the surface 
energy, and to evaluate them in the framework of the 
Maier Saupe model. As shown in [ 111, if the interaction 
volume is of ellipsoidal shape, the uniform part of the 
surface energy is anisotropic with a homeotropic easy 
direction. Let us consider a semi-infinite NLC sample 
and a Cartesian reference frame whose z axis is normal 
to the bounding wall, placed at z =0,  and z>O corre- 
sponds to the NLC half-space. The NLC distortion is 
supposed to  be planar in the (x, z) plane. The average 
NLC orientation is described by means of the tilt angle 
Q, = arccos (n z). For the sake of simplicity, 9 = &z) only. 
Assuming the Maier-Saupe law for the intermolecular 
interaction, and considering that both the molecular and 
the effective interaction volume are ellipsoids of revolu- 
tion (of similar shape) around n, it is possible to define 
the energy of the undistorted configuration, F,, as 

F, = - 1 jvN J(r)dVN 

where J ( r )  = -Cjr“, with C being a positive constant, 
and vv the effective interaction volume. In the situation 
in which the interaction volume is incomplete, i.e. close 
to the surface, a surface free energy density can be 
defincd as 

C(r,  41 = AFde, 4; z) dz (4) 

where e is the eccentricity of the ellipsoidal interaction 
volume and it is supposed to be equal to that of the 
NLC molecule. Furthermore, A ,  and A ,  are, respect- 
ively, the -7 coordinate of the lowest and highest point 
of the ellipsoid, and AF, = Fob - F,(z), where Fob is the 
bulk value of the uniform part of the free energy density. 

The physical meaning of equation (4) is that due to 
NLC-NLC interaction, there exists, in a surface layer 
whose thickness, 0, is several molecular dimensions, an 
anisotropic surface field characterized by a well-defined 
easy direction and anchoring energy. Of course a direct 

NLC-substrate interaction can exist. It is delocalized 
over a surface layer of thickness p s  depending on the 
anisotropic part of the NLC-substate interaction. This 
direct interaction, when integrated over this character- 
istic distance, gives an extrinsic contribution to the 
anchoring energy. It is characterized by another easy 
direction which depends on the physical symmetry of 
the surface and of the NLC. Furthermore, it is also 
characterized by an anisotropic anchoring strength, We,. 
Since 0 2: p s  because the N LC-substrate and NLC NLC 
interactions are of the same kind, i t  is possible to 
introduce a total uniform part of the surface energy. 
defined as the sum of the above mentioned terms. In 
principle, the easy axes are different, and the actual easy 
axis will be in between them. For simplicity, we will 
suppose that they coincide with the z axis, and hence 

w, = lqu + weu. ( 5 )  

However, since we are mainly interested in the analysis 
of the intrinsic part of the surface energy coming from the 
spatial variation of the elastic constants, this hypothesis 
is not very restrictive. 

Some time ago Yokoyama [14] suggested that a 
spatial variation of the elastic constant is equivalent to 
a surface energy. This problem has been reconsidered 
more recently by other authors [lS-181. The main 
conclusion from these kinds of investigation are the 
following. If close to a boundary, k = k(z), the associated 
anisotropic part of the anchoring energy is given by 
~ 1 5 1  

1 k ,  - k ( z )  
dz, 

where, as before, k,  is the bulk value of the elastic 
constant, whereas k(z )  is its actual value at a distance z 
from the wall. It changes over a surface layer whose 
thickness will be denoted by 0. Equation (6) holds only 
when is very small with respect to the thickness of the 
real sample. This implies that long range parts of the 
surface energy, like those connected with electrical 
effects, are not considered [ 19-21]. 

4. Discussion 
We are now in a position to use the results obtained 

previously in [7] to estimate the order of magnitude of 
Welast. In our case. in which the surface is supposedly 
flat and Q, = #(z) ,  equation (3)  can be rewritten as 

F ( 9 .  Z )  = ;k(z)$’’, (7)  
where k(z)  takes into account the positional depcndence 
of the Frank elastic constants and the new elastic con- 
stants connected with the reduction of symmetry intro- 
duced by the wall (the terms c,, for i = 1,2,3,4 of [ 71). 
As follows from 171, k(z)  is well-approximated by the 
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Nematic surface anchoring energy 107 

function 

k(z)  = kb - $ kb e -”‘. (8) 
By substituting (8)  into ( 6 ) ,  straightforward calculations 
give 

1 0  
(9) - = - In 2. 

According to our semi-microscopic calculations, CT is 
expected to be of the order of 20-30 a,, with a, being 
the minor axis of the internal ellipsoid (i.e. the molecular 
volume). By assuming a, N 5 A and k, = erg cm ~ 2 ,  

we find Welast N 1 ergcm-’. This situation corresponds 
to the so-called strong anchoring [22,23]. From 
this result it follows that some other mechanism 
could be responsible for the weak anchoring energy 
experimentally detected [22, 231. 

The semi-microscopic calculations have been per- 
formed by assuming perfect nematic order (i.e. the scalar 
order parameter S = 1). Thus, we need to reconsider this 
hypothesis. As is well known, in the framework of the 
Landau-Ginzburg theory, the actual scalar order para- 
meter profile has to be deduced by minimizing the 
functional written in terms of S. This functional is of the 
kind 

Welast kb 

G =Lm [$LS2 +f(Sj] dz, (10) 

where L is an elastic constant parameter, S’ = dS/dz and 
f ( S )  is the free energy density of the uniform nematic 
phase [24]. Standard calculations show that near the 
boundary, S is given by 

S(z)  = Sb + (So - Sb) e-’’<, (111 
where the bulk value of the order parameter, Sb,  is fixed 
by the temperature, and the surface value of the order 
parameter, So, is fixed by the temperature and the surface 
NLC-substrate interaction. In equation (1 l), 5 is the 
coherence length of the medium in the NLC phase [24]. 
The Frank elastic constants are expected to be propor- 
tional to S according to the law 

k(z) = LS2(z), (12) 
as is shown in [5,24]. It follows that a spatial variation 
of k is expected in a surface layer whose thickness is of 
the order of 5. This is a new contribution which is 
usually neglected in the semi-microscopic approach. 
However, equation (6) remains valid because it was 
obtained without any assumptions about the source of 
the k(zj term [l5]. Hence, instead of equation (8) we 
have to consider the k(z) behaviour given by 

k(z)=[kb-fkbe-”’“][ l  +Ae-”<]’ (13) 

obtained using equation ( 12j, taking into account equa- 

tion (8) ,  and introducing A = (So - sb)/S,. Notice that 
in the hypothesis of perfect nematic order, the elastic 
constant parameter, L, is nothing other than equa- 
tion (8). Since for T close to T,, CJ << 5, equation (13) is 
equivalent to 

k(z) = kb( 1 + A e -z’F)z .  (14) 
It follows that the elastic contribution to the anisotropic 
part of the anchoring energy is given by 

In the limit of A << 1, which implies So not very 
different from S,,, from { 15) we obtain 

1 r 
I 

.__ - - 2 A i .  
Welast kb 

By assuming A = 0-3, and S b  = 0.5, which implies 
So - Sb = 0.15, one obtains for the extrapolation length 
associated with this elastic term, Lelast N 5, i.e. in the 
macroscopic range, as experimentally observed [ 22,231. 

The total extrapolation length is the sum of the 
different contributions analysed above. Hence, it is given 

LT = Lu + Lelastr 

by 

(17) 

where 

and 

Consequently, the total extrapolation length can be 
rewritten as 

This simple result shows that the weak anchoring is 
mainly due to the spatial variation of the scalar order 
parameter. 

5. Conclusions 
We have considered a semi-microscopic approach 

based on the Maier-Saupe approximation to analyse 
the contributions to the intrisic part of the anisotropic 
surface energy. Particular attention has been devoted to 
the effect of the spatial variation of the elastic constants 
on the surface energy. The main conclusions of our 
analysis can be summarized as follows: 

(1) Due to the spatial variation of the elastic con- 
stants, there is an intrinsic contribution to the 
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108 Nematic surface anchoring energy 

anisotropic surface energy. The extrapolation 
length connected to this surface energy is found 
to be of the order of the thickness of the surface 
layer over which the elastic constants change. 
when perfect nematic order is supposed. It is of 
the order of 70w for normal nematics; 

(2)  When the spatial variation of the scalar order 
parameter is taken into account, there is an 
intrinsic elastic contribution whose extrapolation 
length is found to be of the order of the coherence 
length in the NLC phase. It is in the macro- 
scopic range and it is of the same order as the 
extrapolation length experimentally detected 
( % 0.1-0.5 pm). 

Many thanks are due to G. Harbero (Italy) for helpful 
discussions. One of us (L.R.E) thanks the INFM (Italy) 
and CAPES (Brazil) for financial support. 
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